
2 The Density Operator

In this chapter we introduce the density operator, which provides an alternative way
to describe the state of a quantum mechanical system. So far we have only dealt with
situations where the state of a system was perfectly known (in a quantum mechanical
sense). But, as we will see, the density operator is especially well suited for applications
when the information available on a given system is incomplete.
Most of the material presented in this chapter is taken from Auletta, Fortunato and

Parisi, Chap. 5, and Cohen-Tannoudji, Diu and Laloë, Vol. I, Complement EIII.

2.1 Pure States

We already know for the material covered in Chapter 1 that the state of a quantum
mechanical system can be described by a ket

|ψ (t)〉 =
∑
j

cj (t) |uj〉 , (2.1)

where {|uj〉} is a suitable basis for the corresponding space. In such cases the information
on the system is complete. Because |ψ (t)〉 is normalized we also have∑

j

|cj (t)|2 = 1. (2.2)

We further know that the matrix elements of an operator Ô are given by

Oij =
〈
ui

∣∣∣ Ô ∣∣∣uj〉 (2.3)

and the expected value for the operator is calculated with

〈
Ô
〉
ψ

(t) =
〈
ψ (t)

∣∣∣ Ô ∣∣∣ψ (t)
〉

=
∑
i,j

c∗i (t) cj (t)Oij . (2.4)

Finally, the dynamic evolution of the system is governed by the Schrödinger equation
(see equation (1.52)).
A quick examination of equations (2.1) and (2.4) reveals that the product c∗i (t) cj (t)

is a matrix element of the operator |ψ (t)〉〈ψ (t)| since
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2 The Density Operator

〈uj |ψ (t)〉 〈ψ (t) |ui〉 = cj (t) c∗i (t) . (2.5)

We therefore introduce the density operator

ρ̂ (t) ≡ |ψ (t)〉〈ψ (t)| . (2.6)

Since ρ̂ (t) is constructed from the ket defining the state of the system, we should not
be surprised that it presents us with an alternative way calculating the relevant quanti-
ties characterizing that states (e.g., equations (2.2)-(2.4) above). Indeed, the following
relations can be readily verified

Tr (ρ̂ (t)) =
∑
j

ρjj (t)

=
∑
j

〈uj |ψ (t)〉 〈ψ (t) |uj〉

=
∑
j

|cj (t)|2

= 1 (2.7)

for the normalization condition, and

Tr
(
ρ̂ (t) Ô

)
=

∑
j

〈
uj

∣∣∣ ρ̂ (t) Ô
∣∣∣uj〉

=
∑
j,k

〈uj | ρ̂ (t) |uk〉
〈
uk

∣∣∣ Ô ∣∣∣uj〉
=

∑
j,k

ρjk (t)
〈
uk

∣∣∣ Ô ∣∣∣uj〉
=

∑
j,k

cj (t) c∗k (t)
〈
uk

∣∣∣ Ô ∣∣∣uj〉
=

〈
ψ (t)

∣∣∣ Ô ∣∣∣ψ (t)
〉

=
〈
Ô
〉
ψ

(t) (2.8)

for the average of an observable (note also that Tr
(
ρ̂ (t) Ô

)
= Tr

(
Ôρ̂ (t)

)
).

The time evolution of ρ̂ (t) is easily calculated by taking its time derivative and using
the Schrödinger equation (equation (1.52))

d

dt
ρ̂ (t) =

(
d

dt
|ψ (t)〉

)
〈ψ (t)|+ |ψ (t)〉

(
d

dt
〈ψ (t)|

)

42



2 The Density Operator

=
1

i~

[
Ĥ (t) |ψ (t)〉〈ψ (t)| − |ψ (t)〉〈ψ (t)| Ĥ (t)

]
=

1

i~

[
Ĥ (t) , ρ̂ (t)

]
, (2.9)

which is reminiscent of the Heisenberg equation (although not exactly the same; it is
usually referred to as the von Neumann equation). Indeed, we should note that
every relations derived done so far were calculated in the Schrödinger representation
(i.e., |ψ (t)〉 ≡ |ψS (t)〉 and ρ̂ (t) ≡ ρ̂S (t)). However, it is interesting to note that in the
Heisenberg representation the density operator does not depend on time since

ρ̂H (t) = Û †t ρ̂ (t) Ût

= Û †t |ψ (t)〉〈ψ (t)| Ût
= |ψ (0)〉〈ψ (0)|
= ρ̂ (0) , (2.10)

where equations (1.177)-(1.181) were used.
Another important relation is for the probability that a measurement yields the eigen-

value oj of Ô, which can be calculated with

P (oj) = |cj |2

= 〈ψ (t) |uj〉 〈uj |ψ (t)〉

=
〈
ψ (t)

∣∣∣ P̂j ∣∣∣ψ (t)
〉

= Tr
(
ρ̂ (t) P̂j

)
, (2.11)

from equation (2.8) with P̂j the projector on the subspace covered by the eigenvalue oj .
It is interesting to note some of the properties of the density operator. Namely, the

relations involving it are linear in its dependency (see equations (2.7)-(2.11)), contrarily
to the ket |ψ (t)〉 that appears twice in the corresponding expressions. Also, we can verify
that ρ̂ (t) is an Hermitian operator since

ρ†ij (t) = ρ∗ji (t)

= 〈uj | ρ̂ (t) |ui〉∗

= [〈uj |ψ (t)〉 〈ψ (t) |ui〉]∗

= 〈ψ (t) |uj〉 〈ui |ψ (t)〉
= 〈ui |ψ (t)〉 〈ψ (t) |uj〉
= ρij (t) . (2.12)

This last property implies that, although the matrix associated to the density operator
contains off-diagonal elements when expressed in the basis {|uj〉} since
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2 The Density Operator

ρ̂ (t) = |ψ (t)〉〈ψ (t)|
=

∑
i,j

c∗i (t) cj (t) |ui〉〈uj | , (2.13)

it is always possible possible to diagonalize it through a unitary transformation to another
basis {|vj〉} such that

ρ̂ (t) =
∑
j

pj (t) |vj〉〈vj | , (2.14)

with pj (t) the “weight” or eigenvalue associated to the subspace j (see equation (1.21)
in Chapter 1).
Finally, we can also verify that

ρ̂2 (t) = ρ̂ (t) (2.15)
Tr
(
ρ̂2 (t)

)
= 1, (2.16)

which can evidently be extended to higher exponents.

2.2 Statistical Mixtures of States (Mixed States)

It is often the case that only partial information is available on a quantum mechanical
system, in contrast with the situation covered in the last section. More precisely, the
coefficient cj (t) in the expansion for |ψ (t)〉 in equation (2.1) will not be known. Rather,
probabilities pj that a system is in a given state |ψj〉 are to be relied upon to statistically
describe its state and evolution. It is important to note that the fact that we do not
know the coefficients cj (t) makes it impossible to establish a “statistical average” for the
state |ψ (t)〉. However, perhaps a generalization of the density operator introduced for
pure states in the previous section can be used in such a fashion.
In general, there can be a number of probabilities pj and associated states |ψj〉 known

to be occupied by the system |ψ (t)〉, with the condition that∑
j

pj = 1. (2.17)

It is important to note that the different states |ψj〉 are not required to be orthogonal
to one another, as is the case for pure states. This description of a quantum mechanical
system is said to result from a statistical mixture of states or mixed states, for
short.
As was done with the calculations leading to equation (2.11), we could inquire as to

what would the probability P (ok) be of measuring the eigenvalue ok for an observable
Ô. When the system is in the |ψj〉 state this probability would be, using equation (2.11),
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2 The Density Operator

Pj (ok) =
〈
ψj

∣∣∣ P̂k ∣∣∣ψj〉
= Tr

(
ρ̂jP̂k

)
, (2.18)

where ρ̂j = |ψj〉〈ψj |. Using this equation and our limited knowledge concerning the state
of the system we can write the probability P (ok) of measuring the eigenvalue ok as the
following weighted average

P (ok) =
∑
j

pjPj (ok)

=
∑
j

pjTr
(
ρ̂jP̂k

)
=

∑
j,m,n

pj (ρ̂j)mn

(
P̂k

)
nm

=
∑
m,n

∑
j

pj ρ̂j


mn

(
P̂k

)
nm

= Tr

∑
j

pj ρ̂jP̂k

 . (2.19)

Referring once again to equation (2.11) for the case of a pure state, we now write

P (ok) = Tr
(

ˆ̃ρP̂k

)
, (2.20)

where we introduced the density operator for a statistical mixture of states

ˆ̃ρ =
∑
j

pj ρ̂j . (2.21)

We therefore see that the mixed state density operator ˆ̃ρ is a weighted average of the
pure state density operators ρ̂j .
This mixed states density operator shares many properties of its counterpart for a pure

state. More precisely, we can easily verify that

Tr
(

ˆ̃ρ
)

= Tr

∑
j

pj ρ̂j


=

∑
j

pjTr (ρ̂j) (2.22)

=
∑
j

pj

= 1, (2.23)
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2 The Density Operator

where we used equations (2.7) and (2.17), and

〈
Ô
〉

=
∑
k

okPk (ok)

=
∑
k

okTr
(

ˆ̃ρP̂k

)
= Tr

(
ˆ̃ρ
∑
k

okP̂k

)
= Tr

(
ˆ̃ρÔ
)
, (2.24)

where equations (2.20) and (1.21) were used.
We have so far avoided any explicit mention of dynamical evolution and, therefore,

assumed that the previous calculations were effected at a given time t0 such that |ψj〉 ≡
|ψj (t0)〉. If Ĥ (t) is the Hamiltonian of the system, then the initial state |ψj (t0)〉 at t0
will evolve into |ψj (t)〉 at time t according to the Schrödinger equation. That is, at time
t = t0 + dt we have (to first order) |ψj (t)〉 = |ψj (t0)〉+ d |ψj (t0)〉, with

d |ψj (t0)〉 =
1

i~
Ĥ (t0) |ψj (t0)〉 dt, (2.25)

and so on as time evolves. Accordingly, the time-dependent density operator will be

ˆ̃ρ (t) =
∑
j

pj ρ̂j (t) , (2.26)

where ρ̂j (t) = |ψj (t)〉〈ψj (t)|. It should be clear from equation (2.25) that, in general,
|ψj (t)〉 6= |ψj (t0)〉 and thus ˆ̃ρ (t) 6= ˆ̃ρ (t0). It follows that, combining equation (2.9) for
the time evolution of ρ̂j (t) for the corresponding pure state with the linearity property
of ˆ̃ρ (t) in equation (2.26), we have

d

dt
ˆ̃ρ (t) =

1

i~

[
Ĥ (t) , ˆ̃ρ (t)

]
. (2.27)

The mixed state density operator has therefore the same time evolution equation (in
form) as its pure state counterpart. It is straightforward to show that because of its
linearity property the mixed state density operator is also Hermitian

ρ̃†ij (t) =
∑
k

p∗k

(
ρ̂†k

)
ij

(t)

=
∑
k

pk (ρ̂k)ij (t)

= ρ̃ij (t) , (2.28)

since the probabilities pk are real and ρ† (t) = ρ (t).
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2 The Density Operator

In fact, the only properties of ˆ̃ρ (t) (mixed states) that differ from those of ρ̂ (t) (pure
state) are ˆ̃ρ

2
(t) 6= ˆ̃ρ (t) and Tr

(
ˆ̃ρ
2

(t)
)
≤ 1. The first of these relations can be proven

starting with

ˆ̃ρ
2

(t) =
∑
j,k

pjpkρ̂j (t) ρ̂k (t)

=
∑
j,k

pjpk |ψj (t)〉 〈ψj (t) |ψk (t)〉 〈ψk (t)| . (2.29)

If we define, with {|um〉} some basis,

|ψj (t)〉 =
∑
m

cj,m (t) |um〉 , (2.30)

then

〈ψj (t) |ψk (t)〉 =
∑
m

c∗j,m (t) ck,m (t)

≤ 1, (2.31)

for
∑

m c
∗
j,m (t) ck,m (t) = 1 when j = k, and

∑
m c
∗
j,m (t) ck,m (t) = 0 when |ψj (t)〉 and

|ψk (t)〉 are orthogonal. Inserting these two relations in equation (2.29) we have

ˆ̃ρ
2

(t) =
∑
j

p2j ρ̂j (t) +
∑
j,k 6=j

pjpk

[∑
m

c∗j,m (t) ck,m (t)

]
|ψj (t)〉〈ψk (t)| . (2.32)

It is clear from this equation that (e.g., pj 6= p2j ≤ 1)

ˆ̃ρ
2

(t) 6= ˆ̃ρ (t) . (2.33)

The second relation follows from

Tr
(

ˆ̃ρ
2

(t)
)

= Tr

∑
j,k

pjpk |ψj (t)〉 〈ψj (t) |ψk (t)〉 〈ψk (t)|


=

∑
j,k

pjpk

[∑
m

c∗j,m (t) ck,m (t)

]
Tr (|ψj (t)〉〈ψk (t)|)

=
∑
j,k

pjpk

[∑
m

c∗j,m (t) ck,m (t)

][∑
p,q

cj,p (t) c∗k,q (t) Tr (|up〉〈uq|)

]

=
∑
j,k

pjpk

[∑
m

c∗j,m (t) ck,m (t)

][∑
p,q

cj,p (t) c∗k,q (t) δpq

]
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2 The Density Operator

=
∑
j,k

pjpk

[∑
m

c∗j,m (t) ck,m (t)

][∑
p

cj,p (t) c∗k,p (t)

]

=
∑
j,k

pjpk

∣∣∣∣∣∑
m

c∗j,m (t) ck,m (t)

∣∣∣∣∣
2

≤
∑
j,k

pjpk

≤

∑
j

pj

2

≤ 1 (2.34)

since
∣∣∣∑m c

∗
j,m (t) ck,m (t)

∣∣∣2 ≤ 1.
Finally, given an arbitrary vector |ϕ〉 we find

〈
ϕ
∣∣∣ ˆ̃ρ (t)

∣∣∣ϕ〉 =
∑
j

pj 〈ϕ | ρ̂j (t) |ϕ〉

=
∑
j

pj |〈ϕ |ψj (t)〉|2

≥ 0, (2.35)

which implies that the expectation value of mixed density operator is positive (and real).

2.3 Physical Interpretation of the Density Matrix

Since the properties of the density operator are basically the same whether it relates
to pure or mixed states, we will refrain from differentiating between the two types and
use ρ̂ (t) whatever the case. It is, however, understood that the notation ρ̂j (t) refers
to a pure state, which can be part of an overarching density operator in the manner of
equation (2.26) (replacing ˆ̃ρ (t) by ρ̂ (t) for now on).
To get a better understanding of the physical meaning behind the elements ρij (t) of

the density matrix associated to the operator ρ̂ (t), we choose a basis {|uj〉} consider the
following equations

ρjj (t) =
∑
m

pm [ρ̂m (t)]jj

=
∑
m

pm 〈uj |ψm (t)〉 〈ψm (t) |uj〉

=
∑
m

pm |cm,j (t)|2 (2.36)
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2 The Density Operator

and

ρjk (t) =
∑
m

pm [ρ̂m (t)]jk

=
∑
m

pm 〈uj |ψm (t)〉 〈ψm (t) |uk〉

=
∑
m

pmcm,j (t) c∗m,k (t) , (2.37)

where cm,j (t) = 〈uj |ψm (t)〉. Equation (2.36) shows that the diagonal elements ρjj (t)
are the probability of finding the system in the state |uj〉 (|cm,j (t)|2 is the probability of
finding a system in the state |ψk (t)〉 in the eigenstate |uj〉). The elements are therefore
called the populations of the |uj〉 state. On the other hand, the terms cm,j (t) c∗m,k (t)
found in the off-diagonal elements ρjk (t) are responsible for the interference behaviour
characteristic of quantum mechanical systems (see the A and B coefficients in equation
(1.94) for the double slit experiment). For this reason, they are called coherences.
The time evolution of these matrix elements is determined by equation (2.9) (or (2.27)).

For example, when the basis {|uj〉} consists of eigenvectors of the Hamiltonian Ĥ we have
(i.e., Ĥ |uj〉 = Ej |uj〉)

d

dt
ρjj (t) = 0 (2.38)

d

dt
ρjk (t) =

1

i~
(Ej − Ek) ρjk (t) , (2.39)

which imply that

ρjj (t) = ρjj (0) (2.40)

ρjk (t) = ρjk (0) ei(Ej−Ek)t/~. (2.41)

We therefore find that the populations are constant, while the coherences oscillate at the
interference frequencies ωjk = (Ej − Ek) /~.
Finally, keeping with the same basis {|uj〉} of Hamiltonian eigenvectors, it is possible

to show that

ρjjρkk ≥ |ρjk|2 , (2.42)

which implies that coherences can only be present between states having non-zero pop-
ulations (see the First Problem List).

Exercise 2.1. Thermodynamic equilibrium. Let us consider the density operator

ρ̂ = Z−1e−Ĥ/kT , (2.43)
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2 The Density Operator

where the normalization factor is the reciprocal of Z = Tr
(
e−Ĥ/kT

)
, while k and T

are, respectively, the Boltzmann constant and the temperature. Find the populations
and coherences for this operator using the basis {|uj〉} containing the eigenvectors of the
Hamiltonian Ĥ.

Solution.
The populations are given by

ρjj =
〈
uj

∣∣∣ e−Ĥ/kT ∣∣∣uj〉 /Z
= e−Ej/kT /Z (2.44)

with the so-called partition function given by

Z = Tr
(
e−Ĥ/kT

)
=

∑
j

〈
uj

∣∣∣ e−Ĥ/kT ∣∣∣uj〉
=

∑
j

e−Ej/kT . (2.45)

Furthermore, we have

ρjk =
〈
uj

∣∣∣ e−Ĥ/kT ∣∣∣uk〉 /Z
= e−Ej/kT 〈uj |uk〉 /Z
= 0. (2.46)

We therefore recover the Boltzmann formula, which states that the level populations
decrease exponentially with their energy, while there is no coherence between the levels.

Exercise 2.2. Rabi oscillations. Let us consider an initially undisturbed degenerate
two-level system of energy E0, which is subsequentally subjected to a constant pertur-
bation H12 = H∗12 = H21. To simplify matters, let us assume that the system is initially
set such that ρ11 (0) = 1 and ρ12 (0) = ρ22 (0) = 0. The basis {|u1〉 , |u2〉} used to build
the density operator are the eigenvectors of the unperturbed Hamiltonian. Calculate the
the time evolution of the density matrix elements.

Solution.
Using equation (2.9) we can write (with H11 = H22 = E0)

d

dt
ρij (t) =

1

i~

2∑
k=1

[Hikρkj (t)− ρik (t)Hkj ] (2.47)
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and

d

dt
ρ11 (t) =

1

i~
[E0ρ11 (t) +H12ρ21 (t)− ρ11 (t)E0 − ρ12 (t)H21]

=
H12

i~
[ρ∗12 (t)− ρ12 (t)] (2.48)

d

dt
ρ12 (t) =

1

i~
[E0ρ12 (t) +H12ρ22 (t)− ρ11 (t)H12 − ρ12 (t)E0]

=
H12

i~
[ρ22 (t)− ρ11 (t)] (2.49)

d

dt
ρ22 (t) = − d

dt
ρ11 (t) , (2.50)

where we used ρ21 (t) = ρ∗12 (t) and the fact that ρ11 (t) +ρ22 (t) = 1 for the last equation
(see equation (2.7)). Inserting equations (2.48) and (2.50) in the time derivative of
equation (2.49) we have

d2

dt2
ρ12 (t) = −2H12

i~
d

dt
ρ11 (t)

=
2H2

12

~2
[ρ∗12 (t)− ρ12 (t)]

= −i4H
2
12

~2
Im {ρ12 (t)} . (2.51)

It follows from this equation that the real and imaginary parts of the coherence ρ12 (t)
must verify

d2

dt2
Re {ρ12 (t)} = 0 (2.52)

d2

dt2
Im {ρ12 (t)} = −4H2

12

~2
Im {ρ12 (t)} , (2.53)

which, enforcing ρ12 (0) = 0, yields

ρ12 (t) = At+ iB sin

(
2H12

~
t

)
, (2.54)

with A and B are real constants to be evaluated. Inserting this result in equation (2.48)
reveals that

d

dt
ρ11 (t) = −2H12

~
B sin

(
2H12

~
t

)
(2.55)

and
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ρ11 (t) = B cos

(
2H12

~
t

)
+ C (2.56)

ρ22 (t) = 1− C −B cos

(
2H12

~
t

)
. (2.57)

Inserting these relations in equation (2.49) reveals that A = 0 and

ρ12 (t) = i sin

(
2H12

~
t

)
, (2.58)

as well as B = C = 1/2 for

ρ11 (t) =
1

2

[
1 + cos

(
2H12

~
t

)]
(2.59)

ρ22 (t) =
1

2

[
1− cos

(
2H12

~
t

)]
. (2.60)

We therefore see that the populations are periodically completely transferred between
the two levels at the so-called Rabi frequency Ω = 2H12/~ (the corresponding oscilla-
tions are referred to as Rabi oscillations). Interestingly, this happens independently
of the strength of the perturbation H12, although the rate at which the transfer proceeds
does.

2.4 Compound Systems and Entanglement

It is often the case that two (or more) quantum mechanical systems combine to form
a larger system. For example, suppose we have a first subsystem for which the set
of kets {|uj (1)〉} forms a basis and a second for which {|vk (2)〉} plays the same role.
It follows that for the larger, compound system the set of all possible direct products
{|uj (1) vk (2)〉}

|uj (1) vk (2)〉 ≡ |uj (1)〉 ⊗ |vk (2)〉 (2.61)

provides a basis on its product space. Likewise, any observable in one space can be
extended to the product space with

Â (1) = Â (1)⊗ 1̂ (2) (2.62)
B̂ (2) = 1̂ (1)⊗ B̂ (2) . (2.63)

For the mathematical description of the compound system, we must distinguish be-
tween two cases, which we now discuss.
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2.4.1 Separable Systems

Let us consider cases when the state |Ψ (1, 2)〉 of the compound system can be written
as a direct product of the type

|Ψ (1, 2)〉 = |ψ (1)〉 ⊗ |ϕ (2)〉 , (2.64)

where |ψ (1)〉 and |ϕ (2)〉 are state vectors for the first and second subsystems, respec-
tively. The density operator for the product space then follows naturally with

ρ̂ = |Ψ (1, 2)〉〈Ψ (1, 2)|
= |ψ (1)〉〈ψ (1)| ⊗ |ϕ (2)〉〈ϕ (2)|
= ρ̂ (1)⊗ ρ̂ (2) , (2.65)

with ρ̂ (i) the density operator of subsystem i, confined to its own space. Whenever the
state of a system can be expressed by direct products such as in equations (2.64) or (2.65),
then we say that it is separable . It is straightforward to verify that ρ̂ is Hermitian

ρ̂† = [|Ψ (1, 2)〉〈Ψ (1, 2)|]†

= [〈Ψ (1, 2)|]† [|Ψ (1, 2)〉]†

= |Ψ (1, 2)〉〈Ψ (1, 2)|
= ρ̂.

Conversely, it is easy to verify that, when performed on the density operator of the
compound space, the partial trace on, say, the second subspace recovers the density
operator of the first subspace

Tr2 (ρ̂) =
∑
k

〈vk (2) | ρ̂ | vk (2)〉

=
∑
k

〈vk (2) |Ψ (1, 2)〉 〈Ψ (1, 2) | vk (2)〉

= |ψ (1)〉〈ψ (1)| ⊗
∑
k

〈vk (2) |ϕ (2)〉 〈ϕ (2) | vk (2)〉

= ρ̂ (1)⊗
∑
k

|ck (2)|2

= ρ̂ (1) , (2.66)

where ck (2) are the expansion coefficients for (the normalized) |ϕ (2)〉 state in the basis
{|vk (2)〉}. Similarly, we can calculate that

Tr1 (ρ̂) = ρ̂ (2) (2.67)
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and

Tr (ρ̂) = Tr1 (Tr2 (ρ̂))

= Tr2 (Tr1 (ρ̂))

= 1. (2.68)

If we now attempt to determine the expectation value
〈
Â (1)

〉
of the observable defined

for the first subsystem, but extended to the compound system, in the same manner as
we did for a standalone system (see equation (2.8)), we then have〈

Â (1)
〉

= Tr
(
ρ̂Â (1)

)
=

∑
j,k

〈uj (1) vk (2)| ρ̂Â (1) |uj (1) vk (2)〉

=
∑
j,k

∑
m,n

〈uj (1) vk (2)| ρ̂ |um (1) vn (2)〉

〈um (1) vn (2)| Â (1) |uj (1) vk (2)〉 , (2.69)

where we used the unit operator 1̂ (1)⊗ 1̂ (2) =
∑

m,n |um (1) vn (2)〉 〈um (1) vn (2)| in the
last equation, and〈

Â (1)
〉

=
∑
j,k

∑
m,n

〈uj (1) vk (2)| ρ̂ |um (1) vn (2)〉

〈
um (1)

∣∣∣ Â (1)
∣∣∣uj (1)

〉
〈vn (2) | vk (2)〉

=
∑
j,m

〈uj (1)|

[∑
k

〈vk (2) | ρ̂ | vk (2)〉

]
|um (1)〉

〈
um (1)

∣∣∣ Â (1)
∣∣∣uj (1)

〉
=

∑
j,m

〈uj (1) |Tr2 (ρ̂) |um (1)〉
〈
um (1)

∣∣∣ Â (1)
∣∣∣uj (1)

〉
=

∑
j,m

〈uj (1) | ρ̂ (1) |um (1)〉
〈
um (1)

∣∣∣ Â (1)
∣∣∣uj (1)

〉
=

∑
j

〈
uj (1)

∣∣∣ ρ̂ (1) Â (1)
∣∣∣um (1)

〉
= Tr1

(
ρ̂ (1) Â (1)

)
. (2.70)

The probability P (aj (1)) of measuring the eigenvalue aj (1) is calculated in the same
manner (i.e., by simply replacing Â (1) by P̂j (1) and Â (1) by P̂j (1) in equation (2.70))

P (aj (1)) = Tr
(
ρ̂P̂j (1)

)
= Tr1

(
ρ̂ (1) P̂j (1)

)
.
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We thus find that calculations of expectation values and probabilities of an extended
observable on the compound system yields the same value as those restricted to its
original subsystem.

Exercise 2.3. Let us consider two two-level subsystems that are combined to form a
larger compound system. The bases are {|u1 (1)〉 , |u2 (1)〉} and {|v1 (2)〉 , |v2 (2)〉}, and
the two subsystem states are given by

|ψ (1)〉 = c1 (1) |u1 (1)〉+ c2 (1) |u2 (1)〉 (2.71)
|ϕ (2)〉 = c1 (2) |v1 (2)〉+ c2 (2) |v2 (2)〉 . (2.72)

Calculate the density operators ρ̂ (1) and ρ̂ (2) in operator and matrix forms, then do
the same for the compound operator ρ̂. Using the matrix form for ρ̂, how would you
calculate Tr1 (ρ̂) and Tr2 (ρ̂)?

Solution.
For the first subsystem we write for its state

|ψ (1)〉 =
2∑
j=1

cj (1) |uj (1)〉 (2.73)

and for its density operator

ρ̂ (1) = |ψ (1)〉〈ψ (1)|

=
2∑

j,k=1

ck (1) c∗j (1) |uk (1)〉〈uj (1)| (2.74)

= |c1 (1)|2 |u1 (1)〉〈u1 (1)|+ c1 (1) c∗2 (1) |u1 (1)〉〈u2 (1)|
+c2 (1) c∗1 (1) |u2 (1)〉〈u1 (1)|+ |c2 (1)|2 |u2 (1)〉〈u2 (1)| . (2.75)

We already know that ρjk (1) = c∗j (1) ck (1) such that the corresponding matrix is

ρ̂ (1) =

(
|c1 (1)|2 c1 (1) c∗2 (1)

c2 (1) c∗1 (1) |c2 (1)|2
)
. (2.76)

Relations similar to equations (2.74)-(2.76) also holds for ρ̂ (2) (with the needed substi-
tutions).
The density operator of the compound system is therefore

ρ̂ = ρ̂ (1)⊗ ρ̂ (2)

=

 2∑
j,k=1

ck (1) c∗j (1) |uk (1)〉〈uj (1)|

⊗
 2∑
m,n=1

cn (2) c∗m (2) |vn (2)〉〈vm (2)|


=

2∑
j,k,m,n=1

ck (1) c∗j (1) cn (2) c∗m (2) |uk (1) vn (2)〉 〈uj (1) vm (2)| (2.77)
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The matrix form for ρ̂ can be obtained from equation (2.76) and the corresponding
one for ρ̂ (2) to yield

ρ̂ =

(
|c1 (1)|2 c1 (1) c∗2 (1)

c2 (1) c∗1 (1) |c2 (1)|2
)
⊗
(

|c1 (2)|2 c1 (2) c∗2 (2)

c2 (2) c∗1 (2) |c2 (2)|2
)

(2.78)

=

(
|c1 (1)|2 ρ̂ (2) c1 (1) c∗2 (1) ρ̂ (2)

c2 (1) c∗1 (1) ρ̂ (2) |c2 (1)|2 ρ̂ (2)

)

=


|c1 (1)|2 |c1 (2)|2 |c1 (1)|2 c1 (2) c∗2 (2) c1 (1) c∗2 (1) |c1 (2)|

2 c1 (1) c∗2 (1) c1 (2) c
∗
2 (2)

|c1 (1)|2 c2 (2) c∗1 (2) |c1 (1)|2 |c2 (2)|2 c1 (1) c∗2 (1) c2 (2) c∗1 (2) c1 (1) c∗2 (1) |c2 (2)|2

c2 (1) c∗1 (1) |c1 (2)|2 c2 (1) c∗1 (1) c1 (2) c
∗
2 (2) |c2 (1)|2 |c1 (2)|2 |c2 (1)|2 c1 (2) c∗2 (2)

c2 (1) c∗1 (1) c2 (2) c
∗
1 (2) c2 (1) c∗1 (1) |c2 (2)|

2 |c2 (1)|2 c2 (2) c∗1 (2) |c2 (1)|2 |c2 (2)|2

 ,

(2.79)

where vertical and horizontal lines were added to better visualize how a matrix stemming
from a direct product of matrices is built. Comparing equations (2.77) and (2.79) we see
that the j and k indices designate the quadrant of the matrix and the m and n indices
the element within a quadrant. It is easy to verify that Tr (ρ̂) = 1 and ρ̂† = ρ̂.

To recover the matrices for ρ̂ (1) = Tr2 (ρ̂) and ρ̂ (2) = Tr1 (ρ̂) it is advantageous to
first represent the elements of ρ̂ by ρjk,mn, where the first pair of indices (i.e., j and k)
apply to the elements of ρ̂1 and the second (i.e., m and n) to ρ̂ (2) (as in equation (2.77)).
We can then write

ρjk (1) =
∑
m

ρjk,mm (2.80)

ρmn (2) =
∑
j

ρjj,mn. (2.81)

Thus for ρ̂ (1) we first choose a quadrant in equation (2.79) and sum its (two) diagonal
elements, recovering the leftmost matrix on the right-hand side of equation (2.78). For
ρ̂2 we sum the element located on the mth row and nth column in the first (j = 1) and
fourth (j = 2) quadrants, recovering the rightmost matrix on the right-hand side of the
same equation. This process of taking a partial trace on two indices corresponding to one
subspace is commonly called a contraction (notably within the context of tensor calculus
and general relativity).

2.4.2 Entangled Systems

It is not a rule that the state of all compound systems can be expressed as in equations
(2.64) or (2.65). If fact, a quantum mechanical system is said to be entangled when
(here, for the case of two subsystems)

|Ψ (1, 2)〉 6= |ψ (1)〉 ⊗ |ϕ (2)〉 . (2.82)
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This is similar to saying that the two subsystems are not statistically independent. To
get a better sense as to what this means, let us take two two-level subsystems, with re-
spective bases {|u1 (1)〉 , |u2 (1)〉} and {|v1 (2)〉 , |v2 (2)〉}, which form a compound system
described by, say, the state

|Ψ (1, 2)〉 =
1√
2

(|u1 (1) v2 (2)〉+ |u2 (1) v1 (2)〉) . (2.83)

A close inspection of equation (2.83) will convince the reader that this ket cannot be
factorized in a direct product of two kets, one from each subspace.
The density operator of the compound system is calculated in the usual manner to

yield

ρ̂ = |Ψ (1, 2)〉〈Ψ (1, 2)|

=
1

2
[|u1 (1) v2 (2)〉 〈u1 (1) v2 (2)|+ |u1 (1) v2 (2)〉 〈u2 (1) v1 (2)|

+ |u2 (1) v1 (2)〉 〈u1 (1) v2 (2)|+ |u2 (1) v1 (2)〉 〈u2 (1) v1 (2)|] . (2.84)

Let us now compute ρ̂ (1), as we did in the previous section,

ρ̂ (1) = Tr2 (ρ̂)

= 〈v1 (2) | ρ̂ | v1 (2)〉+ 〈v2 (2) | ρ̂ | v2 (2)〉

=
1

2
[|u2 (1)〉〈u2 (1)|+ |u1 (1)〉〈u1 (1)|] . (2.85)

In a similar manner we have

ρ̂ (2) = Tr1 (ρ̂)

= 〈u1 (1) | ρ̂ |u1 (1)〉+ 〈u2 (1) | ρ̂ |u2 (1)〉

=
1

2
[|v2 (2)〉〈v2 (2)|+ |v1 (2)〉〈v1 (2)|] . (2.86)

If we now calculate the direct product of these two reduced density operators, we find
that

ρ̂′ = ρ̂ (1)⊗ ρ̂ (2)

=
1

4
[|u1 (1) v1 (2)〉 〈u1 (1) v1 (2)|+ |u1 (1) v2 (2)〉 〈u1 (1) v2 (2)|

= + |u2 (1) v1 (2)〉 〈u2 (1) v1 (2)|+ |u2 (1) v2 (2)〉 〈u2 (1) v2 (2)|]
6= ρ̂. (2.87)

This result is completely at odds with what we found for separable systems. That is,
performing partial traces to inquire about only one of the two subsystems at a time,
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independently of the other, has altered the overall compound system in a manner that
we cannot recover its initial state from the reduced subsystems. This is a signature of
the initial correlation (or entanglement) between the subsystems. In other words, the
two subsystems are not independent and must treated as one single quantum mechanical
entity (i.e., the compound system).
It is also instructive to contemplate entanglement from the point of the state of a system

(i.e., not through the density operator). We once again consider a compound system
|Ψ (1, 2)〉 made from two subsystems |ψ (1)〉 and |ϕ (2)〉 (without necessarily assuming
them to be two-level systems). Performing a measurement to find the probability of
finding the non-degenerate eigenvalue aj of the observable Â (1) (or Â (1)) on the first
subsystem, irrespective of the state of the second subsystem, we have

P (aj) =
〈

Ψ (1, 2)
∣∣∣ P̂j (1)

∣∣∣Ψ (1, 2)
〉

=
∑
k

|〈uj (1) vk (2) |Ψ (1, 2)〉|2 . (2.88)

The state |Ψ′ (1, 2)〉 of the compound system after the measurement is given by

∣∣Ψ′ (1, 2)
〉

=
P̂j (1) |Ψ (1, 2)〉√〈

Ψ (1, 2)
∣∣∣ P̂j (1)

∣∣∣Ψ (1, 2)
〉

=

∑
k |uj (1) vk (2)〉〈uj (1) vk (2)| |Ψ (1, 2)〉√∑

k |〈uj (1) vk (2) |Ψ (1, 2)〉|2
. (2.89)

It should be clear that the choice of the {|vk (2)〉} basis is totally arbitrary and could not
affect the outcome of the measurement on the first subsystem. If the original compound
state was separable to start with such that

|Ψ (1, 2)〉 = |ψ (1)〉 ⊗ |ϕ (2)〉 (2.90)

then

∣∣Ψ′ (1, 2)
〉

=
P̂j (1) |Ψ (1, 2)〉√〈

Ψ (1, 2)
∣∣∣ P̂j (1)

∣∣∣Ψ (1, 2)
〉

=

(
P̂j (1)⊗ 1̂ (2)

)
(|ψ (1)〉 ⊗ |ϕ (2)〉)√〈

Ψ (1, 2)
∣∣∣ P̂j (1)

∣∣∣Ψ (1, 2)
〉

=
P̂j (1) |ψ (1)〉√〈

ψ (1)
∣∣∣ P̂j (1)

∣∣∣ψ (1)
〉 ⊗ |ϕ (2)〉 , (2.91)
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while

P (aj) =
〈

Ψ (1, 2)
∣∣∣ P̂j (1)

∣∣∣Ψ (1, 2)
〉

=
〈

Ψ (1, 2)
∣∣∣ [P̂j (1)⊗ 1̂ (2)

] ∣∣∣Ψ (1, 2)
〉

=
〈
ψ (1)

∣∣∣ P̂j (1)
∣∣∣ψ (1)

〉 〈
ϕ (2)

∣∣ 1̂ (2)
∣∣ϕ (2)

〉
= |〈uj (1) |ψ (1)〉|2 . (2.92)

These equations are, indeed, independent of the basis used to expand |ϕ (2)〉. We also
note, as we should have expected, that the state emerging after the measurement is also
separable. Importantly, the probability of obtaining a given outcome on a measurement
on one subsystem only depends on that system, as is clearly seen in equation (2.92). The
two subsystems are therefore uncorrelated (both before and after the measurement).
It is interesting to note that the final state of the compound system after a measurement

is also separable even when the original compound system is entangled, as can be verified
by transforming equation (2.89) to

∣∣Ψ′ (1, 2)
〉

= |uj (1)〉 ⊗
∑

k |vk (2)〉 〈uj (1) vk (2) |Ψ (1, 2)〉√∑
k |〈uj (1) vk (2) |Ψ (1, 2)〉|2

. (2.93)

The final compound state is the direct product of the final state |uj (1)〉 of the first sub-
system corresponding to the eigenvalue aj with a modified state for the second subsystem.
We therefore conclude that a measurement on one subsystem leaves the compound system
in a separable state irrespective of its nature before the measurement.
For an entangled system the probability P (aj) of the measurement on the first subsys-

tem is seen from equation (2.88) to also depends on the state of the second subsystem.
This is the signature of the existence of an initial correlation between the two subsystems,
and evidence that they have interacted in the past. However, the measurement process
will remove any correlation, since the outcome is a separable compound state.
Finally, we note the surprising fact that the final state of the second subsystem

∣∣ϕ′ (2)
〉

=

∑
k |vk (2)〉 〈uj (1) vk (2) |Ψ (1, 2)〉√∑

k |〈uj (1) vk (2) |Ψ (1, 2)〉|2
(2.94)

depends on the nature of the measurement made on the first subsystem (from the presence
of 〈uj (1)| in this equation). For example, the two subsystems may have interacted at
one point in the past, then move a large distance away from one another. But one
subsystem would still be directly affected by a subsequent measurement made on the
other subsystem, irrespective on how far from each other they are. This is the essence of
the so-called Einstein-Podolsky-Rosen paradox.

Exercise 2.4. Let us consider two two-level subsystems that can exist in the states |↑〉
and |↓〉. The systems are brought together to form a larger one in the initial state
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|Ψ (1, 2)〉 =
1√
2

(|↑↓〉+ |↓↑〉) . (2.95)

A measurement is made on the first subsystem to find the probability P (↑1). What is
the state of the second subsystem after the measurement?

Solution.
Referring to equation (2.94), the state of the second subsystem after the measurement

on the first is

∣∣ϕ′ (2)
〉

=
|↓2〉 〈↑↓ |Ψ (1, 2)〉+ |↑2〉 〈↑↑ |Ψ (1, 2)〉√
|〈↑↓ |Ψ (1, 2)〉|2 + |〈↑↑ |Ψ (1, 2)〉|2

= |↓2〉 . (2.96)

It follows that the measurement on the first subsystem has completely determined the
final state of the second. That is, an observer who obtained |↑1〉 as the measurement
outcome knows with certainty that ϕ′ (2) = |↓2〉.
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